Pure Mathematics 2

Exercise 1F

1 Example: when $n=1, m=3$ and 3 is not divisible by 10 .
So the statement is not true.
$23,5,7,11,13,17,19,23$ are the prime numbers between 2 and 26 .
The other odd numbers between 2 and 26 are $9,15,21,25$.
$9=3 \times 3$
$15=5 \times 3$
$21=7 \times 3$
$25=5 \times 5$
So every odd integer between 2 and 26 is either prime or the product of two primes.
$3 \quad 2^{2}+3^{2}=$ odd
$3^{2}+4^{2}=$ odd
$4^{2}+5^{2}=$ odd
$5^{2}+6^{2}=$ odd
$6^{2}+7^{2}=$ odd
So the sum of two consecutive square numbers between 1^{2} and 8^{2} is always an odd number.

4 Break down the integers into numbers divisible by 3 and numbers giving a remainder of 1 or 2 when divided by 3 .
$(3 n)^{3}=27 n^{3}=9 n\left(3 n^{2}\right)$ which is a multiple of 9 .

$$
\begin{aligned}
(3 n+1)^{3} & =27 n^{3}+27 n^{2}+9 n+1 \\
& =9 n\left(3 n^{2}+3 n+1\right)+1
\end{aligned}
$$

which is one more than a multiple of 9 .

$$
\begin{aligned}
(3 n+2)^{3} & =27 n^{3}+54 n^{2}+36 n+8 \\
& =9 n\left(3 n^{2}+6 n+4\right)+8
\end{aligned}
$$

which is one less than a multiple of 9 .
So all cube numbers are either a multiple of 9 or 1 more or 1 less than a multiple of 9.

5 a Example: when $n=2,2^{4}-2=14$ 14 is not divisible by 4 .
b Any square number has an odd number of factors, for example 25 has 3 factors.

5 c Example: when $n=1$,
$2(1)^{2}-6(1)+1=2-6+1=-3$ which is negative.
d Example: when $n=1$, $2(1)^{2}-2(1)-4=2-2-4=-4$ which is not a multiple of 3 .

6 a The error lies in the last stage. We can only write this statement if $3\left(x^{2}\right) y+3 x\left(y^{2}\right)$ is greater than zero. No work has been done to prove or disprove this.
b Example, when $x=0$ and $y=0$, $0^{3}+0^{3}=(0+0)^{3}$
$7 \quad(x+5)^{2} \geq 0$ for all real values of x
As $(x+5)^{2}=x^{2}+10 x+25$
and $(x+6)^{2}=x^{2}+12 x+36$
$(x+5)^{2}+2 x+11=(x+6)^{2}$
So $(x+6)^{2} \geq 2 x+11$
$8 \quad$ As a is positive, multiplying both sides by a does not reverse the inequality
So $a^{2}+1 \geq 2 a$
Then $a^{2}-2 a+1 \geq 0$
Factorising gives
$(a-1)^{2} \geq 0$ which we know is true.

9 a By squaring both sides, consider $(p+q)^{2}$
$(p+q)^{2}=p^{2}+2 p q+q^{2}$

$$
=(p-q)^{2}+4 p q
$$

$(p-q)^{2} \geq 0$ since it is a square
so $(p+q)^{2} \geq 4 p q$
p and q are both positive
so $p>0$ and $q>0$
Therefore, $p+q>0$
So $p+q \geq \sqrt{4 p q}$
b When $p=q=-1, p+q=-2$
and $\sqrt{4 p q}=2$
but $-2<2$, i.e. $p+q<\sqrt{4 p q}$
which is inconsistent.

10 a The student had forgotten the significance of x and y both being negative i.e. the left hand side is negative while the right hand side can be positive. In this case the inequality could not be true.

10 b When $x=y=-1, x+y=-2$
and $\sqrt{x^{2}+y^{2}}=\sqrt{2}$
$-2<\sqrt{2}$
c $(x+y)^{2}=x^{2}+2 x y+y^{2}$
As $x>0$ and $y>0$ then $2 x y>0$.
So $x^{2}+2 x y+y^{2} \geq x^{2}+y^{2}$
As $x+y>0$, square root both sides
$x+y \geq \sqrt{x^{2}+y^{2}}$

